library("tidyverse")
library("tibble")
library("msigdbr")
library("ggplot2")
library("TCGAbiolinks")
library("RNAseqQC")
library("DESeq2")
library("ensembldb")
library("purrr")
library("magrittr")
library("vsn")
library("matrixStats")
library("dplyr")
library("grex")
library("survminer")
library("survival")
Create a function for downloading TCGA gene expression data.
For more detailed documentation, refer to
2. Differential Gene Expression Analysis - TCGA.Rmd
.
query_and_filter_samples <- function(project) {
query_tumor <- GDCquery(
project = project,
data.category = "Transcriptome Profiling",
data.type = "Gene Expression Quantification",
experimental.strategy = "RNA-Seq",
workflow.type = "STAR - Counts",
access = "open",
sample.type = "Primary Tumor"
)
tumor <- getResults(query_tumor)
query_normal <- GDCquery(
project = project,
data.category = "Transcriptome Profiling",
data.type = "Gene Expression Quantification",
experimental.strategy = "RNA-Seq",
workflow.type = "STAR - Counts",
access = "open",
sample.type = "Solid Tissue Normal"
)
normal <- getResults(query_normal)
submitter_ids <- inner_join(tumor, normal, by = "cases.submitter_id") %>%
dplyr::select(cases.submitter_id)
tumor <- tumor %>%
dplyr::filter(cases.submitter_id %in% submitter_ids$cases.submitter_id)
normal <- normal %>%
dplyr::filter(cases.submitter_id %in% submitter_ids$cases.submitter_id)
samples <- rbind(tumor, normal)
unique(samples$sample_type)
query_project <- GDCquery(
project = project,
data.category = "Transcriptome Profiling",
data.type = "Gene Expression Quantification",
experimental.strategy = "RNA-Seq",
workflow.type = "STAR - Counts",
access = "open",
sample.type = c("Solid Tissue Normal", "Primary Tumor"),
barcode = as.list(samples$sample.submitter_id)
)
# If this is your first time running this notebook (i.e., you have not yet downloaded the results of the query in the previous block),
# uncomment the line below
# GDCdownload(query_project)
return(list(samples = samples, query_project = query_project))
}
Download the TCGA gene expression data for colorectal cancer (TCGA-COAD).
projects <- c("TCGA-COAD")
with_results_projects <- c()
samples <- list()
project_data <- list()
for (project in projects) {
result <- tryCatch(
{
result <- query_and_filter_samples(project)
samples[[project]] <- result$samples
project_data[[project]] <- result$query_project
with_results_projects <- c(with_results_projects, project)
},
error = function(e) {
}
)
}
Running the code block above should generate and populate a directory
named GDCdata
.
Construct the RNA-seq count matrix for each cancer type.
tcga_data <- list()
tcga_matrix <- list()
projects <- with_results_projects
for (project in projects) {
tcga_data[[project]] <- GDCprepare(project_data[[project]], summarizedExperiment = TRUE)
}
for (project in projects) {
count_matrix <- assay(tcga_data[[project]], "unstranded")
# Remove duplicate entries
count_matrix_df <- data.frame(count_matrix)
count_matrix_df <- count_matrix_df[!duplicated(count_matrix_df), ]
count_matrix <- data.matrix(count_matrix_df)
rownames(count_matrix) <- cleanid(rownames(count_matrix))
count_matrix <- count_matrix[!(duplicated(rownames(count_matrix)) | duplicated(rownames(count_matrix), fromLast = TRUE)), ]
tcga_matrix[[project]] <- count_matrix
}
Format the samples
table so that it can be fed as input
to DESeq2.
for (project in projects) {
rownames(samples[[project]]) <- samples[[project]]$cases
samples[[project]] <- samples[[project]] %>%
dplyr::select(case = "cases.submitter_id", type = "sample_type")
samples[[project]]$type <- str_replace(samples[[project]]$type, "Solid Tissue Normal", "normal")
samples[[project]]$type <- str_replace(samples[[project]]$type, "Primary Tumor", "tumor")
}
DESeq2 requires the row names of samples
should be
identical to the column names of count_matrix
.
for (project in projects) {
colnames(tcga_matrix[[project]]) <- gsub(x = colnames(tcga_matrix[[project]]), pattern = "\\.", replacement = "-")
tcga_matrix[[project]] <- tcga_matrix[[project]][, rownames(samples[[project]])]
# Sanity check
print(all(colnames(tcga_matrix[[project]]) == rownames(samples[[project]])))
}
For more detailed documentation on obtaining the gene set, refer to
7. Differential Gene Expression Analysis - TCGA - Pan-cancer - Unique Genes.Rmd
.
RCDdb <- "temp/unique_genes/necroptosis_ferroptosis_pyroptosis/"
Write utility functions for filtering the gene sets, performing differential gene expression analysis, plotting the results, and performing variance-stabilizing transformation.
filter_gene_set_and_perform_dgea <- function(genes) {
tcga_rcd <- list()
for (project in projects) {
rownames(genes) <- genes$gene_id
tcga_rcd[[project]] <- tcga_matrix[[project]][rownames(tcga_matrix[[project]]) %in% genes$gene_id, ]
tcga_rcd[[project]] <- tcga_rcd[[project]][, rownames(samples[[project]])]
}
dds_rcd <- list()
res_rcd <- list()
for (project in projects) {
print(project)
print("=============")
dds <- DESeqDataSetFromMatrix(
countData = tcga_rcd[[project]],
colData = samples[[project]],
design = ~type
)
dds <- filter_genes(dds, min_count = 10)
dds$type <- relevel(dds$type, ref = "normal")
dds_rcd[[project]] <- DESeq(dds)
res_rcd[[project]] <- results(dds_rcd[[project]])
}
deseq.bbl.data <- list()
for (project in projects) {
deseq.results <- res_rcd[[project]]
deseq.bbl.data[[project]] <- data.frame(
row.names = rownames(deseq.results),
baseMean = deseq.results$baseMean,
log2FoldChange = deseq.results$log2FoldChange,
lfcSE = deseq.results$lfcSE,
stat = deseq.results$stat,
pvalue = deseq.results$pvalue,
padj = deseq.results$padj,
cancer_type = project,
gene_symbol = genes[rownames(deseq.results), "gene"]
)
}
deseq.bbl.data.combined <- bind_rows(deseq.bbl.data)
deseq.bbl.data.combined <- dplyr::filter(deseq.bbl.data.combined, abs(log2FoldChange) >= 1.5 & padj < 0.05)
return(deseq.bbl.data.combined)
}
plot_dgea <- function(deseq.bbl.data.combined) {
sizes <- c("<10^-15" = 4, "10^-10" = 3, "10^-5" = 2, "0.05" = 1)
deseq.bbl.data.combined <- deseq.bbl.data.combined %>%
mutate(fdr_category = cut(padj,
breaks = c(-Inf, 1e-15, 1e-10, 1e-5, 0.05),
labels = c("<10^-15", "10^-10", "10^-5", "0.05"),
right = FALSE
))
top_genes <- deseq.bbl.data.combined %>%
group_by(cancer_type) %>%
mutate(rank = rank(-abs(log2FoldChange))) %>%
dplyr::filter(rank <= 10) %>%
ungroup()
ggplot(top_genes, aes(y = cancer_type, x = gene_symbol, size = fdr_category, fill = log2FoldChange)) +
geom_point(alpha = 0.5, shape = 21, color = "black") +
scale_size_manual(values = sizes) +
scale_fill_gradient2(low = "blue", mid = "white", high = "red", limits = c(min(deseq.bbl.data.combined$log2FoldChange), max(deseq.bbl.data.combined$log2FoldChange))) +
theme_minimal() +
theme(
axis.text.x = element_text(size = 9, angle = 90, hjust = 1)
) +
theme(legend.position = "bottom") +
theme(legend.position = "bottom") +
labs(size = "Adjusted p-value", fill = "log2 FC", y = "Cancer type", x = "Gene")
}
perform_vsd <- function(genes) {
tcga_rcd <- list()
for (project in projects) {
rownames(genes) <- genes$gene_id
tcga_rcd[[project]] <- tcga_matrix[[project]][rownames(tcga_matrix[[project]]) %in% genes$gene_id, ]
tcga_rcd[[project]] <- tcga_rcd[[project]][, rownames(samples[[project]])]
}
vsd_rcd <- list()
for (project in projects) {
print(project)
print("=============")
dds <- DESeqDataSetFromMatrix(
countData = tcga_rcd[[project]],
colData = samples[[project]],
design = ~type
)
dds <- filter_genes(dds, min_count = 10)
# Perform variance stabilization
dds <- estimateSizeFactors(dds)
nsub <- sum(rowMeans(counts(dds, normalized = TRUE)) > 10)
vsd <- vst(dds, nsub = nsub)
vsd_rcd[[project]] <- assay(vsd)
}
return(vsd_rcd)
}
Fetch the gene set of interest.
genes <- read.csv(paste0(RCDdb, "Necroptosis.csv"))
print(genes)
genes$gene_id <- cleanid(genes$gene_id)
genes <- distinct(genes, gene_id, .keep_all = TRUE)
genes <- subset(genes, gene_id != "")
genes
Filter the genes to include only those in the gene set of interest, and then perform differential gene expression analysis.
deseq.bbl.data.combined <- filter_gene_set_and_perform_dgea(genes)
[1] "TCGA-COAD"
[1] "============="
Warning: some variables in design formula are characters, converting to factorsestimating size factors
estimating dispersions
gene-wise dispersion estimates
mean-dispersion relationship
final dispersion estimates
fitting model and testing
-- replacing outliers and refitting for 1 genes
-- DESeq argument 'minReplicatesForReplace' = 7
-- original counts are preserved in counts(dds)
estimating dispersions
fitting model and testing
deseq.bbl.data.combined
Plot the results.
plot_dgea(deseq.bbl.data.combined)
Perform variance-stabilizing transformation for further downstream analysis (i.e., for survival analysis).
vsd <- perform_vsd(genes)
[1] "TCGA-COAD"
[1] "============="
Download clinical data from TCGA, and perform some preprocessing: -
The deceased
column should be FALSE
if the
patient is alive and TRUE
otherwise - The
overall_survival
column should reflect the follow-up time
if the patient is alive and the days to death otherwise
download_clinical_data <- function(project) {
clinical_data <- GDCquery_clinic(project)
clinical_data$deceased <- ifelse(clinical_data$vital_status == "Alive", FALSE, TRUE)
clinical_data$overall_survival <- ifelse(clinical_data$vital_status == "Alive",
clinical_data$days_to_last_follow_up,
clinical_data$days_to_death
)
return(clinical_data)
}
tcga_clinical <- list()
for (project in projects) {
tcga_clinical[[project]] <- download_clinical_data(project)
}
Write utility functions for performing survival analysis.
construct_gene_df <- function(gene_of_interest, project) {
normal_df <- tcga_matrix[[project]] %>%
as.data.frame() %>%
rownames_to_column(var = "gene_id") %>%
gather(key = "case_id", value = "counts", -gene_id) %>%
left_join(., genes, by = "gene_id") %>%
dplyr::filter(gene == gene_of_interest) %>%
dplyr::filter(case_id %in% rownames(samples[[project]] %>% dplyr::filter(type == "normal")))
normal_df$case_id <- paste0(sapply(strsplit(as.character(normal_df$case_id), "-"), `[`, 1), '-',
sapply(strsplit(as.character(normal_df$case_id), "-"), `[`, 2), '-',
sapply(strsplit(as.character(normal_df$case_id), "-"), `[`, 3))
tumor_df <- tcga_matrix[[project]] %>%
as.data.frame() %>%
rownames_to_column(var = "gene_id") %>%
gather(key = "case_id", value = "counts", -gene_id) %>%
left_join(., genes, by = "gene_id") %>%
dplyr::filter(gene == gene_of_interest) %>%
dplyr::filter(case_id %in% rownames(samples[[project]] %>% dplyr::filter(type == "tumor")))
tumor_df$case_id <- paste0(sapply(strsplit(as.character(tumor_df$case_id), "-"), `[`, 1), '-',
sapply(strsplit(as.character(tumor_df$case_id), "-"), `[`, 2), '-',
sapply(strsplit(as.character(tumor_df$case_id), "-"), `[`, 3))
gene_df <- inner_join(normal_df, tumor_df, by = c("gene_id", "case_id", "deathtype", "gene", "description", "gene_biotype", "pmid", "comment"))
gene_df$log_fold = log2(gene_df$counts.y / gene_df$counts.x)
gene_df$strata <- ifelse(abs(gene_df$log_fold) >= 1.5, "HIGH", "LOW")
gene_df <- merge(gene_df, tcga_clinical[[project]], by.x = "case_id", by.y = "submitter_id")
return(gene_df)
}
compute_surival_fit <- function(gene_df) {
return (survfit(Surv(overall_survival, deceased) ~ strata, data = gene_df))
}
compute_cox <- function(gene_df) {
return (coxph(Surv(overall_survival, deceased) ~ strata, data=gene_df))
}
plot_survival <- function(fit) {
return(ggsurvplot(fit,
data = gene_df,
pval = T,
risk.table = T,
risk.table.height = 0.3
))
}
compute_survival_diff <- function(gene_df) {
return(survdiff(Surv(overall_survival, deceased) ~ strata, data = gene_df))
}
Perform survival analysis by testing for the difference in the Kaplan-Meier curves using the G-rho family of Harrington and Fleming tests: https://rdrr.io/cran/survival/man/survdiff.html
MLKL is the primary executor of necroptosis.
significant_projects <- c()
significant_genes <- c()
ctr <- 1
for (project in projects) {
for (gene in c("MLKL", genes$gene)) {
cat(project, gene, "\n\n")
tryCatch (
{
gene_df <- construct_gene_df(gene, project)
},
error = function(e) {
}
)
if (nrow(gene_df) > 0) {
fit <- compute_surival_fit(gene_df)
tryCatch (
{
survival <- compute_survival_diff(gene_df)
cox <- compute_cox(gene_df)
print(ctr)
ctr <- ctr + 1
print(survival)
cat("\n")
print(cox)
print(plot_survival(fit))
if (pchisq(survival$chisq, length(survival$n)-1, lower.tail = FALSE) < 0.05) {
significant_projects <- c(significant_projects, project)
significant_genes <- c(significant_genes, gene)
}
},
error = function(e) {
}
)
}
cat("\n\n============================\n\n")
}
}
TCGA-COAD MLKL
[1] 1
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 9 2 1.13 0.6795 0.769
strata=LOW 37 10 10.87 0.0703 0.769
Chisq= 0.8 on 1 degrees of freedom, p= 0.4
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.6831 0.5051 0.7938 -0.86 0.39
Likelihood ratio test=0.64 on 1 df, p=0.4224
n= 46, number of events= 12
============================
TCGA-COAD RBCK1
[1] 2
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 7 2 1.23 0.482 0.562
strata=LOW 39 10 10.77 0.055 0.562
Chisq= 0.6 on 1 degrees of freedom, p= 0.5
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.5963 0.5508 0.8068 -0.739 0.46
Likelihood ratio test=0.49 on 1 df, p=0.4849
n= 46, number of events= 12
============================
TCGA-COAD JAK2
[1] 3
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 17 3 4.42 0.454 0.775
strata=LOW 29 9 7.58 0.265 0.775
Chisq= 0.8 on 1 degrees of freedom, p= 0.4
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.5917 1.8071 0.6819 0.868 0.385
Likelihood ratio test=0.81 on 1 df, p=0.3674
n= 46, number of events= 12
============================
TCGA-COAD ZBP1
[1] 4
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 21 5 5.24 0.01133 0.0219
strata=LOW 25 7 6.76 0.00879 0.0219
Chisq= 0 on 1 degrees of freedom, p= 0.9
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.09016 1.09434 0.60925 0.148 0.882
Likelihood ratio test=0.02 on 1 df, p=0.8822
n= 46, number of events= 12
============================
TCGA-COAD RNF31
[1] 5
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 16 4 4.32 0.0241 0.04
strata=LOW 30 8 7.68 0.0136 0.04
Chisq= 0 on 1 degrees of freedom, p= 0.8
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.1257 1.1339 0.6289 0.2 0.842
Likelihood ratio test=0.04 on 1 df, p=0.8408
n= 46, number of events= 12
============================
TCGA-COAD IFNB1
[1] 6
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
n=8, 38 observations deleted due to missingness.
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 7 2 2.607 0.141 1.19
strata=LOW 1 1 0.393 0.938 1.19
Chisq= 1.2 on 1 degrees of freedom, p= 0.3
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 1.445 4.243 1.435 1.007 0.314
Likelihood ratio test=0.94 on 1 df, p=0.3318
n= 8, number of events= 3
(38 observations deleted due to missingness)
============================
TCGA-COAD TRAF5
[1] 7
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 14 3 3.86 0.1926 0.299
strata=LOW 32 9 8.14 0.0914 0.299
Chisq= 0.3 on 1 degrees of freedom, p= 0.6
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.3692 1.4466 0.6791 0.544 0.587
Likelihood ratio test=0.31 on 1 df, p=0.577
n= 46, number of events= 12
============================
TCGA-COAD BIRC2
[1] 8
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 16 4 3.69 0.0259 0.0413
strata=LOW 30 8 8.31 0.0115 0.0413
Chisq= 0 on 1 degrees of freedom, p= 0.8
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.1314 0.8768 0.6473 -0.203 0.839
Likelihood ratio test=0.04 on 1 df, p=0.8398
n= 46, number of events= 12
============================
TCGA-COAD TRAF2
[1] 9
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 9 1 2.31 0.740 0.968
strata=LOW 37 11 9.69 0.176 0.968
Chisq= 1 on 1 degrees of freedom, p= 0.3
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.9971 2.7105 1.0558 0.944 0.345
Likelihood ratio test=1.16 on 1 df, p=0.282
n= 46, number of events= 12
============================
TCGA-COAD BCL2
[1] 10
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 24 5 5.28 0.0148 0.0296
strata=LOW 22 7 6.72 0.0117 0.0296
Chisq= 0 on 1 degrees of freedom, p= 0.9
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.1059 1.1117 0.6159 0.172 0.864
Likelihood ratio test=0.03 on 1 df, p=0.8634
n= 46, number of events= 12
============================
TCGA-COAD STAT4
[1] 11
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 23 6 6.23 0.00850 0.0199
strata=LOW 23 6 5.77 0.00918 0.0199
Chisq= 0 on 1 degrees of freedom, p= 0.9
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.08592 1.08972 0.60968 0.141 0.888
Likelihood ratio test=0.02 on 1 df, p=0.8881
n= 46, number of events= 12
============================
TCGA-COAD BIRC3
[1] 12
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 24 6 5.68 0.0179 0.0373
strata=LOW 22 6 6.32 0.0161 0.0373
Chisq= 0 on 1 degrees of freedom, p= 0.8
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.1176 0.8891 0.6087 -0.193 0.847
Likelihood ratio test=0.04 on 1 df, p=0.8466
n= 46, number of events= 12
============================
TCGA-COAD STAT1
[1] 13
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 14 3 4.18 0.331 0.615
strata=LOW 32 9 7.82 0.177 0.615
Chisq= 0.6 on 1 degrees of freedom, p= 0.4
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.6051 1.8314 0.7833 0.773 0.44
Likelihood ratio test=0.67 on 1 df, p=0.4119
n= 46, number of events= 12
============================
TCGA-COAD STAT2
[1] 14
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11 2 1.88 0.00754 0.00935
strata=LOW 35 10 10.12 0.00140 0.00935
Chisq= 0 on 1 degrees of freedom, p= 0.9
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.07666 0.92621 0.79318 -0.097 0.923
Likelihood ratio test=0.01 on 1 df, p=0.9236
n= 46, number of events= 12
============================
TCGA-COAD TNFSF10
[1] 15
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 29 6 7.12 0.175 0.514
strata=LOW 17 6 4.88 0.255 0.514
Chisq= 0.5 on 1 degrees of freedom, p= 0.5
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.4380 1.5496 0.6156 0.711 0.477
Likelihood ratio test=0.5 on 1 df, p=0.4814
n= 46, number of events= 12
============================
TCGA-COAD TYK2
[1] 16
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 8 2 1.77 0.02966 0.0362
strata=LOW 38 10 10.23 0.00513 0.0362
Chisq= 0 on 1 degrees of freedom, p= 0.8
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.1504 0.8603 0.7919 -0.19 0.849
Likelihood ratio test=0.04 on 1 df, p=0.8516
n= 46, number of events= 12
============================
TCGA-COAD PPIA
[1] 17
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 9 2 1.75 0.03557 0.0434
strata=LOW 37 10 10.25 0.00607 0.0434
Chisq= 0 on 1 degrees of freedom, p= 0.8
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.1649 0.8479 0.7930 -0.208 0.835
Likelihood ratio test=0.04 on 1 df, p=0.8379
n= 46, number of events= 12
============================
TCGA-COAD TNFRSF1A
[1] 18
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 21 4 5.06 0.222 0.462
strata=LOW 25 8 6.94 0.162 0.462
Chisq= 0.5 on 1 degrees of freedom, p= 0.5
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.4401 1.5529 0.6525 0.674 0.5
Likelihood ratio test=0.46 on 1 df, p=0.4958
n= 46, number of events= 12
============================
TCGA-COAD CAPN2
[1] 19
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 25 6 6.59 0.0528 0.135
strata=LOW 21 6 5.41 0.0644 0.135
Chisq= 0.1 on 1 degrees of freedom, p= 0.7
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.2247 1.2519 0.6127 0.367 0.714
Likelihood ratio test=0.13 on 1 df, p=0.715
n= 46, number of events= 12
============================
TCGA-COAD FAS
[1] 20
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 24 5 5.98 0.160 0.357
strata=LOW 22 7 6.02 0.159 0.357
Chisq= 0.4 on 1 degrees of freedom, p= 0.6
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.3629 1.4375 0.6109 0.594 0.552
Likelihood ratio test=0.36 on 1 df, p=0.5513
n= 46, number of events= 12
============================
TCGA-COAD PGAM5
[1] 21
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 6 1 1.06 0.003552 0.00404
strata=LOW 40 11 10.94 0.000345 0.00404
Chisq= 0 on 1 degrees of freedom, p= 0.9
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.06758 1.06991 1.06283 0.064 0.949
Likelihood ratio test=0 on 1 df, p=0.9489
n= 46, number of events= 12
============================
TCGA-COAD MLKL
[1] 22
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 9 2 1.13 0.6795 0.769
strata=LOW 37 10 10.87 0.0703 0.769
Chisq= 0.8 on 1 degrees of freedom, p= 0.4
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.6831 0.5051 0.7938 -0.86 0.39
Likelihood ratio test=0.64 on 1 df, p=0.4224
n= 46, number of events= 12
============================
TCGA-COAD FADD
[1] 23
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 7 1 1.63 0.2436 0.302
strata=LOW 39 11 10.37 0.0383 0.302
Chisq= 0.3 on 1 degrees of freedom, p= 0.6
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.5781 1.7826 1.0660 0.542 0.588
Likelihood ratio test=0.34 on 1 df, p=0.5598
n= 46, number of events= 12
============================
TCGA-COAD TRPM7
[1] 24
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 18 4 3.95 0.000754 0.00126
strata=LOW 28 8 8.05 0.000369 0.00126
Chisq= 0 on 1 degrees of freedom, p= 1
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.02297 0.97729 0.64838 -0.035 0.972
Likelihood ratio test=0 on 1 df, p=0.9718
n= 46, number of events= 12
============================
TCGA-COAD FASLG
[1] 25
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 26 7 8.35 0.219 0.775
strata=LOW 20 5 3.65 0.503 0.775
Chisq= 0.8 on 1 degrees of freedom, p= 0.4
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.5374 1.7116 0.6173 0.871 0.384
Likelihood ratio test=0.74 on 1 df, p=0.3896
n= 46, number of events= 12
============================
TCGA-COAD TNFRSF10B
[1] 26
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 13 3 2.35 0.1804 0.231
strata=LOW 33 9 9.65 0.0439 0.231
Chisq= 0.2 on 1 degrees of freedom, p= 0.6
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.3257 0.7221 0.6802 -0.479 0.632
Likelihood ratio test=0.22 on 1 df, p=0.6407
n= 46, number of events= 12
============================
TCGA-COAD VPS4A
[1] 27
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 12 2 2.66 0.1633 0.225
strata=LOW 34 10 9.34 0.0465 0.225
Chisq= 0.2 on 1 degrees of freedom, p= 0.6
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.3742 1.4538 0.7938 0.471 0.637
Likelihood ratio test=0.24 on 1 df, p=0.6253
n= 46, number of events= 12
============================
TCGA-COAD TNFRSF10A
[1] 28
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 9 2 1.61 0.0941 0.113
strata=LOW 37 10 10.39 0.0146 0.113
Chisq= 0.1 on 1 degrees of freedom, p= 0.7
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.2651 0.7671 0.7924 -0.335 0.738
Likelihood ratio test=0.11 on 1 df, p=0.7446
n= 46, number of events= 12
============================
TCGA-COAD GLUD1
[1] 29
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 13 3 3.18 0.01069 0.0157
strata=LOW 33 9 8.82 0.00386 0.0157
Chisq= 0 on 1 degrees of freedom, p= 0.9
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.08662 1.09048 0.69088 0.125 0.9
Likelihood ratio test=0.02 on 1 df, p=0.8997
n= 46, number of events= 12
============================
TCGA-COAD EIF2AK2
[1] 30
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 14 2 3.41 0.585 0.86
strata=LOW 32 10 8.59 0.232 0.86
Chisq= 0.9 on 1 degrees of freedom, p= 0.4
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.7132 2.0406 0.7853 0.908 0.364
Likelihood ratio test=0.95 on 1 df, p=0.3303
n= 46, number of events= 12
============================
TCGA-COAD CYLD
[1] 31
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 18 4 3.9 0.00256 0.00423
strata=LOW 28 8 8.1 0.00123 0.00423
Chisq= 0 on 1 degrees of freedom, p= 0.9
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.04215 0.95873 0.64791 -0.065 0.948
Likelihood ratio test=0 on 1 df, p=0.9482
n= 46, number of events= 12
============================
TCGA-COAD SPATA2
[1] 32
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 19 5 3.72 0.442 0.723
strata=LOW 27 7 8.28 0.198 0.723
Chisq= 0.7 on 1 degrees of freedom, p= 0.4
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.5413 0.5820 0.6441 -0.84 0.401
Likelihood ratio test=0.7 on 1 df, p=0.4026
n= 46, number of events= 12
============================
TCGA-COAD DNM1L
[1] 33
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 8 2 1.67 0.0645 0.0777
strata=LOW 38 10 10.33 0.0104 0.0777
Chisq= 0.1 on 1 degrees of freedom, p= 0.8
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.2202 0.8023 0.7920 -0.278 0.781
Likelihood ratio test=0.07 on 1 df, p=0.7856
n= 46, number of events= 12
============================
TCGA-COAD CFLAR
[1] 34
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 17 4 3.85 0.00622 0.0097
strata=LOW 29 8 8.15 0.00293 0.0097
Chisq= 0 on 1 degrees of freedom, p= 0.9
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.06218 0.93971 0.63142 -0.098 0.922
Likelihood ratio test=0.01 on 1 df, p=0.9218
n= 46, number of events= 12
============================
TCGA-COAD TICAM1
[1] 35
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 18 2 4.07 1.056 1.85
strata=LOW 28 10 7.93 0.543 1.85
Chisq= 1.8 on 1 degrees of freedom, p= 0.2
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 1.037 2.821 0.797 1.301 0.193
Likelihood ratio test=2.01 on 1 df, p=0.156
n= 46, number of events= 12
============================
TCGA-COAD HSP90AA1
[1] 36
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 13 3 3.28 0.02335 0.0336
strata=LOW 33 9 8.72 0.00877 0.0336
Chisq= 0 on 1 degrees of freedom, p= 0.9
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.1245 1.1326 0.6800 0.183 0.855
Likelihood ratio test=0.03 on 1 df, p=0.8534
n= 46, number of events= 12
============================
TCGA-COAD IL33
[1] 37
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 26 8 5.42 1.23 2.52
strata=LOW 20 4 6.58 1.01 2.52
Chisq= 2.5 on 1 degrees of freedom, p= 0.1
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -1.0601 0.3464 0.6953 -1.525 0.127
Likelihood ratio test=2.62 on 1 df, p=0.1053
n= 46, number of events= 12
============================
TCGA-COAD IRF9
[1] 38
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 16 4 3.86 0.00543 0.00844
strata=LOW 30 8 8.14 0.00257 0.00844
Chisq= 0 on 1 degrees of freedom, p= 0.9
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.05788 0.94376 0.62996 -0.092 0.927
Likelihood ratio test=0.01 on 1 df, p=0.927
n= 46, number of events= 12
============================
TCGA-COAD SHARPIN
[1] 39
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 7 1 2.05 0.539 0.681
strata=LOW 39 11 9.95 0.111 0.681
Chisq= 0.7 on 1 degrees of freedom, p= 0.4
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.8459 2.3300 1.0555 0.801 0.423
Likelihood ratio test=0.8 on 1 df, p=0.3704
n= 46, number of events= 12
============================
TCGA-COAD IFNAR1
[1] 40
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 16 4 3.65 0.0345 0.0546
strata=LOW 30 8 8.35 0.0151 0.0546
Chisq= 0.1 on 1 degrees of freedom, p= 0.8
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.1510 0.8598 0.6471 -0.233 0.815
Likelihood ratio test=0.05 on 1 df, p=0.8165
n= 46, number of events= 12
============================
TCGA-COAD XIAP
[1] 41
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 20 4 4.41 0.0380 0.0692
strata=LOW 26 8 7.59 0.0221 0.0692
Chisq= 0.1 on 1 degrees of freedom, p= 0.8
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.1709 1.1864 0.6507 0.263 0.793
Likelihood ratio test=0.07 on 1 df, p=0.7918
n= 46, number of events= 12
============================
TCGA-COAD VDAC3
[1] 42
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 9 2 2.2 0.0179 0.023
strata=LOW 37 10 9.8 0.0040 0.023
Chisq= 0 on 1 degrees of freedom, p= 0.9
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.1202 1.1278 0.7928 0.152 0.879
Likelihood ratio test=0.02 on 1 df, p=0.8781
n= 46, number of events= 12
============================
TCGA-COAD CAMK2A
[1] 43
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 32 8 7.01 0.141 0.392
strata=LOW 14 4 4.99 0.198 0.392
Chisq= 0.4 on 1 degrees of freedom, p= 0.5
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.4219 0.6558 0.6790 -0.621 0.534
Likelihood ratio test=0.41 on 1 df, p=0.5225
n= 46, number of events= 12
============================
TCGA-COAD VDAC1
[1] 44
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 10 3 1.86 0.697 0.863
strata=LOW 36 9 10.14 0.128 0.863
Chisq= 0.9 on 1 degrees of freedom, p= 0.4
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.6345 0.5302 0.6942 -0.914 0.361
Likelihood ratio test=0.76 on 1 df, p=0.3829
n= 46, number of events= 12
============================
TCGA-COAD RIPK3
[1] 45
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 21 5 4.9 0.00192 0.00357
strata=LOW 25 7 7.1 0.00133 0.00357
Chisq= 0 on 1 degrees of freedom, p= 1
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.03668 0.96399 0.61408 -0.06 0.952
Likelihood ratio test=0 on 1 df, p=0.9524
n= 46, number of events= 12
============================
TCGA-COAD CAPN1
[1] 46
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 9 1 2.52 0.913 1.23
strata=LOW 37 11 9.48 0.242 1.23
Chisq= 1.2 on 1 degrees of freedom, p= 0.3
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 1.113 3.044 1.056 1.054 0.292
Likelihood ratio test=1.48 on 1 df, p=0.2232
n= 46, number of events= 12
============================
TCGA-COAD USP21
[1] 47
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 8 1 2.16 0.622 0.804
strata=LOW 38 11 9.84 0.137 0.804
Chisq= 0.8 on 1 degrees of freedom, p= 0.4
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.9162 2.4997 1.0576 0.866 0.386
Likelihood ratio test=0.95 on 1 df, p=0.3291
n= 46, number of events= 12
============================
TCGA-COAD AIFM1
[1] 48
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 16 3 3.51 0.0729 0.115
strata=LOW 30 9 8.49 0.0301 0.115
Chisq= 0.1 on 1 degrees of freedom, p= 0.7
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.2363 1.2666 0.6978 0.339 0.735
Likelihood ratio test=0.12 on 1 df, p=0.7313
n= 46, number of events= 12
============================
TCGA-COAD TRADD
[1] 49
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 6 1 1.73 0.3108 0.377
strata=LOW 40 11 10.27 0.0525 0.377
Chisq= 0.4 on 1 degrees of freedom, p= 0.5
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.6365 1.8899 1.0547 0.604 0.546
Likelihood ratio test=0.43 on 1 df, p=0.5114
n= 46, number of events= 12
============================
TCGA-COAD OPTN
[1] 50
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 17 4 3.65 0.0345 0.0546
strata=LOW 29 8 8.35 0.0151 0.0546
Chisq= 0.1 on 1 degrees of freedom, p= 0.8
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.1510 0.8598 0.6471 -0.233 0.815
Likelihood ratio test=0.05 on 1 df, p=0.8165
n= 46, number of events= 12
============================
TCGA-COAD PPID
[1] 51
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 12 2 2.56 0.1228 0.167
strata=LOW 34 10 9.44 0.0333 0.167
Chisq= 0.2 on 1 degrees of freedom, p= 0.7
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.3228 1.3810 0.7939 0.407 0.684
Likelihood ratio test=0.18 on 1 df, p=0.675
n= 46, number of events= 12
============================
TCGA-COAD RIPK1
[1] 52
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 17 5 4.07 0.212 0.363
strata=LOW 29 7 7.93 0.109 0.363
Chisq= 0.4 on 1 degrees of freedom, p= 0.5
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.3811 0.6831 0.6367 -0.599 0.549
Likelihood ratio test=0.36 on 1 df, p=0.5506
n= 46, number of events= 12
============================
TCGA-COAD TLR3
[1] 53
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 33 7 8.4 0.234 1.01
strata=LOW 13 5 3.6 0.545 1.01
Chisq= 1 on 1 degrees of freedom, p= 0.3
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.6268 1.8717 0.6339 0.989 0.323
Likelihood ratio test=0.91 on 1 df, p=0.3391
n= 46, number of events= 12
============================
TCGA-COAD FAF1
[1] 54
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 10 2 2.24 0.02644 0.0343
strata=LOW 36 10 9.76 0.00608 0.0343
Chisq= 0 on 1 degrees of freedom, p= 0.9
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.1469 1.1582 0.7933 0.185 0.853
Likelihood ratio test=0.04 on 1 df, p=0.851
n= 46, number of events= 12
============================
TCGA-COAD JAK1
[1] 55
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 19 5 3.98 0.260 0.436
strata=LOW 27 7 8.02 0.129 0.436
Chisq= 0.4 on 1 degrees of freedom, p= 0.5
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.4163 0.6595 0.6351 -0.655 0.512
Likelihood ratio test=0.43 on 1 df, p=0.5136
n= 46, number of events= 12
============================
Display the results only for genes where a significant difference in survival has been reported.
significant_genes
NULL
num_significant_genes <- length(significant_genes)
if (num_significant_genes > 0) {
for (i in 1 : num_significant_genes) {
project <- significant_projects[[i]]
gene <- significant_genes[[i]]
cat(project, gene, "\n\n")
gene_df <- construct_gene_df(gene, project)
survival <- compute_survival_diff(gene_df)
cox <- compute_cox(gene_df)
print(survival)
cat("\n")
print(cox)
print(plot_survival(fit))
cat("\n\n============================\n\n")
}
}
De La Salle University, Manila, Philippines, gonzales.markedward@gmail.com↩︎
De La Salle University, Manila, Philippines, anish.shrestha@dlsu.edu.ph↩︎